Electrical and optical properties of NiO films deposited by magnetron sputtering

نویسندگان

  • MAREK GUZIEWICZ
  • JAKUB GROCHOWSKI
  • MICHAL BORYSIEWICZ
  • ELIANA KAMINSKA
  • JAROSLAW Z. DOMAGALA
  • WITOLD RZODKIEWICZ
  • BARTLOMIEJ S. WITKOWSKI
  • KRYSTYNA GOLASZEWSKA
  • RENATA KRUSZKA
  • MAREK EKIELSKI
  • ANNA PIOTROWSKA
چکیده

Films of transparent semiconductors are widely studied and developed because of high potential applications in electronics in last decade. Our work concerns the properties of NiO films fabricated by RF magnetron sputtering. Electrical and optical parameters of the films were characterized using Hall and transmittance measurements, respectively. P-type conductivity of as-deposited films and after annealing in oxygen or argon at the temperature range from 300 °C to 900 °C was verified. Transmittance of NiO films strongly depends on deposition temperature and oxygen amount during sputtering. Films deposited at room temperature without oxygen have transmittance near 50% in the visible range and resistivity about 65 Ωcm. An increase in oxygen amount in deposition gas mixture results in higher conductivity, but transmittance decreases below 6%. Resistivity of 0.125 Ωcm was attained at sputtering in oxygen. Films deposited at temperature elevated up to 500 °C are characterized by transmittance above 60% and lower conductivity. Annealing of NiO films in Ar causes resistivity to rise dramatically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of sputtering RF power on structural, optical and electrical properties of CuO and CuO2 thin films

In this paper, the RF power change effect on the structural, optical and electrical properties of CuO thin films prepared by RF reactive magnetron sputtering deposited on glass substrates are studied. At first, the thin films are prepared at 150, 280, 310 and 340W respectively. Then, the films are characterized by XRD, AFM, Uv-visible and four-point probe analysis respectively. The results show...

متن کامل

The Effect of Substrate on Structural and Electrical Properties of Cu3N Thin Film by DC Reactive Magnetron Sputtering

The aim of this paper is to study the effect of substrate on the Cu3N thin films. At first Cu3N thin films are prepared using DC magnetron sputtering system. Then structural properties, surface roughness, and electrical resistance are studied using X-ray diffraction (XRD), the atomic force microscope (AFM) and four-point probe techniques respectively. Finally, the results are investigated and c...

متن کامل

Mechanical Properties and Microstructural Evolution of Ta/TaNx Double Layer Thin Films Deposited by Magnetron Sputtering

Crystalline tantalum thin films of about 500nm thickness were deposited on AISI 316L stainless steel substrate using magnetron sputtering. To investigate the nano-mechanical properties of tantalum films, deposition was performed at two temperatures (25°C and 200°C) on TaNx intermediate layer with different N2/Ar flow rate ratio from 0 to 30%. Nano-indentation was performed to obtain the mechani...

متن کامل

Effect of Thickness on Properties of Copper Thin Films Growth on Glass by DC Planar Magnetron Sputtering

Copper thin films with nano-scale structure have numerous applications in modern technology.  In this work, Cu thin films with different thicknesses from 50–220 nm have been deposited on glass substrate by DC magnetron sputtering technique at room temperature in pure Ar gas. The sputtering time was considered in 4, 8, 12 and 16 min, respectively. The thickness effect on the structural, mo...

متن کامل

Structural, Electrical and Optical Properties of Molybdenum Oxide Thin Films Prepared by Post-annealing of Mo Thin Films

Molybdenum thin films with 50 and 150 nm thicknesses were deposited on silicon substrates, using DC magnetron sputtering system, then post-annealed at different temperatures (200, 325, 450, 575 and 700°C) with flow oxygen at 200 sccm (standard Cubic centimeter per minute). The crystallographic structure of the films was obtained by means of x-ray diffraction (XRD) analysis. An atomic force micr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011